6 resultados para Cyanobacteria

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese dout., Ciências e Tecnologias do Ambiente, Universidade do Algarve, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong water demand for irrigation, energy and drinking water production is responsible for an increasingly regulation of freshwater flow patterns and watersheds. In this context, the construction of dams allows water storage but seriously restricts freshwater flow downstream. Due to scarcity of freshwater resources, reservoir water management often promotes high hydraulic residence. This may cause strong impacts on biological components of aquatic ecosystems, influencing the development of cyanobacteria blooms and aggravating their harmful impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria are a recognised public health hazard, because the majority of species is able to produce toxins. The monitoring is usually restricted to freshwater environments, like lakes or dams used for water supply. Cyanobacteria blooms have been regularly reported in the Guadiana River and high estuary and most of the observed cyanobacteria were toxin producers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências e Tecnologias do Ambiente, Escola Superior de Saúde, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese dout., Ciências do Mar (Ecologia Marinha), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alterations of freshwater flow regimes and increasing eutrophication lead to alterations in light availability and nutrient loading into adjacent estuaries and coastal areas. Phytoplankton community respond to these changes in many ways. Harmful phytoplankton blooms, for instance, may be a consequence of changes in nutrient supply, as well as the replacement of some phytoplankton species (like diatoms, that contribute for the development of large fish and shellfish populations) by ohers (like cyanobacteria, that may be toxic and represent an undesirable food source for higher trophic levels). Nutrient and light enrichment experiments allow us to understand and predict the effects of eutrophication on the growth of phytoplankton. This is a fundamental tool in water management issues, since it enables the prediction of changes in the phytoplankton community that may be harmful to the whole ecosystem, and the design of mitigation strategies (Zalewski 2000).